
MAV 2023
H. Jekel

TU Delft - Aerospace Engineering

1 INTRODUCTION

Our project aimed to create an autonomous obstacle
avoidance system for a drone, with the ultimate goal of cov-
ering the largest distance in a 10-minute flying contest. To
accomplish this, we utilized two different approaches: opti-
cal flow and color filtering. The optical flow approach was
primarily focused on identifying obstacles and computing the
distance between the drone’s camera and the obstacle, as de-
tailed in section 2. During circular flight, we observed that
obstacles in the drone’s flight path exhibited a constant optical
flow magnitude, which allowed us to detect them as explained
in section 3. Furthermore, this approach enabled the drone to
evade obstacles by merely adjusting its flight radius, obviat-
ing the need for deceleration and directional changes. Nev-
ertheless, we chose the color filtering approach for the com-
petition, as it allowed the camera to identify orange, green,
white, and black objects, as described in section 4.

2 BIRDS-EYE VIEW MAP CONSTRUCTION AND
OBSTACLE AVOIDANCE

In this section, we present the first optical flow approach
we examined, which involves constructing a 2D horizontal
obstacle map using depth estimation from optical flow. The
resulting map can be used for path planning. We provide de-
tails on the visual concept, control concept, and implementa-
tion of this approach below.

2.1 Vision concept
Using the horizontal optical flow equation and rearrang-

ing it for the depth z, the following can be found:

z =
Vx − u · Vz − VuVz∆t

Vu
(1)

Here, Vx and Vz are the horizontal velocity components of
the drone in its body frame (left to right and up to down re-
spectably), u is the horizontal image projection of the marker
w.r.t. the center of the image, Vu is the horizontal optical flow
and ∆t is the time difference between the frames.
Using a vertical edge detector on the image one can find
markers to be tracked by the optical flow to calculate the
depth of the associated point. After accounting for the cur-
vature of the lens and calculating their depth, the exact posi-
tion of the point in 3d can be calculated in the camera frame.
Only the flow in the x-direction would be considered, allow-
ing these measurements to be projected on a 2D obstacle map.
This approach, as any optical flow approach, had the pitfall of
not being able to detect featureless surfaces, and we came
up with an additional remedy for that. If there was a big

area without flow detections, the color in that area would be
checked. If it was black, like the featureless background, it
would be left alone. However, if it was e.g. the whiteboard,
we would interpolated the closest depth measurements to its
left and right over that whole area.

2.2 Control concept
With the 2d obstacle map constructed, navigation can be

carried out. Three approaches where considered: One was
checking, if the transversal obstacle clearance for continuing
straight is sufficient, otherwise turning in the direction of best
clearance, and the second was calculating the direction with
the best transversal obstacle clearance to be followed. The
third approach was a bit more complex, but would likely be
the best one given more time. Here, measurements would be
assigned to radially dispersed grid points, which were linked
together to allow the drone to fly in circles by following the
connections between these points. Then, the heuristic, which
also represents the permissible speed, is updated for these
grid points based on the obstacle detections and finally, an
A*-like algorithm could find the best path forward.

2.3 Implementation
Many parts of this approach were constructed in python.

The image undistortion, derotation and cropping was imple-
mented in python as well as C++. Finding flow in the im-
age was implemented using a ClaHE equalization followed
by a vertical Sobel filter. The pixel values after the Sobel
filter were then used to select and describe features to track.
Work on the third control concept also started in python, with
the grid created and connected in a meaningful way. How-
ever, as the competition was approaching, the team realised
there was just too much to finish with this approach and we
had to move on to something simpler. That simpler approach
was the color avoider described in section 4 but as we were
encouraged by the professors to give optical flow one more
chance, we devised one more simpler optical flow approach
as well, presented in section 3.

3 DIRECT FLOW CLASSIFICATION IN CIRCULAR
FLIGHT

We brainstormed ideas for something that could be imple-
mented quickly and we came up with an approach that used
circular flight to be able to classify obstacles from a single
flow detection.

3.1 Vision concept
Obstacle detection is possible during straight flight, how-

ever, the obstacle directly in front of the drone, on a colli-

1



Figure 1: Optical flows of obstacles in straight flight

sion course, has no flow. Figure 1 plots the flow magnitudes
for obstacles at increasing static distances from the center-
line during a steady forward flight, illustrating this point. It
can also be seen that there exists a 1-to-1 transform from the
viewing angle and flow magnitude to distances in the x and
y direction in straight flight, as long as the speed and shutter
speed are known and obstacles are stationary.
In circular flight, obstacles on a collision trajectory have some
constant optical flow on their way through the camera view,
making it possible to detect the most dangerous obstacles on a
direct collision course. Additionally, circular motion induces
more optical flow, which means that noise has a lower impact
on the accuracy of these readings. We plotted a graph of the
movement of obstacles in the visual field of the drone during
steady circular flight, with obstacles on one line perpendicu-
lar to the circle at various higher and lower radii. Figure 2
displays the result of this experiment, which shows that al-
though the transform from this space to the position of the
obstacles relative to the drone is no longer 1-to-1, it is still
almost 1-to-1, with just a small region where the lines cross
over, allowing us to classify most obstacles from a single flow
vector detection.

3.2 Control concept

Compared to straight flight, there are several advantages
to circular motion. Firstly, moving on a circular path means
that the drone will never hit the boundaries of the arena, with
constraints on the maximum radius. Secondly, the only thing
to control is the radius and speed based on the obstacle detec-
tion. The exact logic will be explained in the implementation
section but basically it follow: ”if there is an obstacle on your
collision path, check the next upper and lower radius, adjust
to a free radius” in perpetuity. Finally, moving through the
arena on a circular path allows for a significantly higher av-
erage speed than moving along straight lines in an ideal sce-
nario. Additionally, a controller that allows the drone to fly

Figure 2: Optical flows of obstacles in circular flight

in circular flight in guided mode had already been developed,
which also contributed to the attractiveness of this option.

3.3 Implementation

To implement this approach, several files have been ad-
justed and pieced together, all of which can be seen in the
Optical flow circle branch. Starting from the camera, the ex-
isting opticflow calculator and opticflow module files were
used. Obstacle detections were checked with linear bound-
aries shown in dashed grey in Figure 2. The pixel values cor-
responding to the angle values were calibrated. The number
of detections was also capped and would evaporate with new
frames to deal with noise. Detections were made on the col-
lision path and one lower and higher radius each. The optical
flow ABI message was modified to send the numbers of these
detections, received by the modified orange avoider guided
module, which controlled the radius and speed of the circular
flight. All of this is put together in the BUU configuration.

3.4 Shortcomings

Almost all of the parts of the system were there and con-
nected, however, it was not enough to fly successfully in time.
There is only one full part that was missing and that was im-
age undistortion. This would skew the optical flow magni-
tudes, mainly in the edges of the view, but it was assumed that
we could still work around this since the readings around the
center of the image should still be accurate. Other than that,
the drone missed testing, debugging, tuning, and verification,
to better set the detection classifiers, flight speeds and other
parameters. Of course, there would still be shortcomings to
this detector even if it was finished, mainly that it would not
be able to avoid areas with no optic flow, it would not be able

2

https://github.com/HAJEKEL/paparazzi/tree/Optical_flow_circle
https://github.com/HAJEKEL/paparazzi/blob/Optical_flow_circle/sw/airborne/modules/computer_vision/opticflow/opticflow_calculator.c
https://github.com/HAJEKEL/paparazzi/blob/Optical_flow_circle/sw/airborne/modules/computer_vision/opticflow_module.c
https://github.com/HAJEKEL/paparazzi/blob/Optical_flow_circle/sw/airborne/modules/orange_avoider/orange_avoider_guided.c


to detect obstacles while changing radii, and it would not be
able to avoid an obstacle if it spanned through all of its avail-
able radii. All of these shortcomings could be mitigated by
additional classifiers or control rules.

4 COLOUR AVOIDER

As previously mentioned, our team chose to employ a
color recognition approach for obstacle detection in anticipa-
tion of possible delays in completing the optical flow method
before the competition. The color recognition algorithm in-
volved two main steps: determining the number of pixels in
the camera footage that have a color that falls within the color
filter range and comparing it to a predefined threshold to de-
termine if the drone was too close to an obstacle.

4.1 Colour filtering and finding thresholds
Although YUV images are not easiest to interpret, we

opted to directly analyze colors in the YUV format for greater
efficiency. To identify the proper lower and upper bounds for
each color in YUV format, we utilized the ”Learning color
classifier” notebook provided on Brightspace, which employs
a machine learning-based decision tree approach to identify
the conditions in which pixels of the desired color are found.
The first thing we had to do for this algorithm was to correctly
label out test data. Of which we had approximately 2000 im-
ages gathered from test footage in the CyberZoo, featuring all
possible obstacles. We wrote a Python script which would it-
erate through photos and create masks for each of them using
HSV color filtering. (Figure 3). Then, once the labeling was
done, we only had to feed the test data to the algorithm which
would train itself to recognize the chosen color and then give
the final values in the form of a logical decision tree. And this
decision tree helps define 2 arrays which correspond to lower
and upper bounds to determine a color in YUV format.
In the subsequent step, we developed a Python code to de-

termine an initial approximation of the pixel count threshold
by iterating through ten hand-picked images. We then used
this threshold to analyze all test footage and adjust the val-
ues of the arrays and the threshold to minimize false positives
while ensuring accurate detection of true positives. We also
conducted a test flight in the CyberZoo a few days before the
competition, but our drone did not take off due to technical is-
sues with Paparazzi. The obtained color filters are presented
in table 1.

Table 1: YUV Color Filters and Thresholds
Color Lower Bound Upper Bound Threshold
Green (100, 0, 0) (114, 126, 155) 3000
Black (40, 0, 0) (114, 126, 165) 20000
White (213, 0, 0) (255, 255, 255) 45000

4.2 Paparazzi implementation of Color Filtering
After discussing the color filtering approach in theory, the

next step was to implement it in Paparazzi. The relevant code

Figure 3: Example of a mask obtained from an image in the
dataset

Figure 4: Example of settings to change the thresholds and
colour values on the spot.

can be found in the orange branch. The color filtering ap-
proach was built on top of the original orange avoider, so the
two have a very similar structure. During the addition of the
extra functionality, several files were modified as described
below.

4.2.1 bebop course orangeavoid.xml

In this file, the extra color filters were initialized. The actual
values were then optimized using the Python script described
earlier to obtain two arrays corresponding to the lower and
upper bounds for the desired color in YUV format.

4.2.2 cv detect color object.xml

To avoid hardcoding all the color and threshold values in the
code, the settings were expanded to include sliders for both
the color values in YUV and the threshold. This allowed us
to walk around the cyberzoo and fine-tune the values during
testing. Figure 4 illustrates how these sliders and inputs func-
tion.

3

https://github.com/HAJEKEL/paparazzi/tree/orange
https://github.com/HAJEKEL/paparazzi/blob/Optical_flow_circle/conf/airframes/tudelft/bebop_course_orangeavoid.xml
https://github.com/HAJEKEL/paparazzi/blob/orange/conf/modules/cv_detect_color_object.xml


4.2.3 cv detect color object.c

The color detection code underwent modifications to accom-
modate the additional filters, both in the header and C code.
Of particular note is the new implementation, which involves
checking each filter individually for a pixel count threshold,
rather than simply summing all pixels that fall within the fil-
ter’s range. This modification allows the AbI to send a mes-
sage to the orange avoider code for evasive action only when
a threshold has been exceeded for a specific color filter, in-
dicating that an obstacle of that particular color is in close
proximity. As such, the drone will not take action if multiple
obstacles of different colors are detected in the distance, such
as orange cones or the audience, thereby minimizing unnec-
essary evasive maneuvers.
An additional modification made in this part is that only the
central section of the camera feed is considered, which is
situated approximately at the drone’s altitude and is crucial
for obstacle avoidance. This approach also ensures that the
ground plane does not interfere with the detection of obsta-
cles, such as trees, as the ground is generally green. The cam-
era feed in VLC is presented in Figure 5, where the original
top and bottom sections of the image are accompanied by the
middle section with the color white overlaid on the original
image, indicating pixels whose color falls within the range of
the detected colors, as previously described. The implemen-
tation of the color avoider method resulted in a flight distance
of 67 meter in 10 minutes.

Figure 5: Example of only the middle horizontal being part
of the colour avoider algorithm.

4.3 Reflection on colour avoider method

The use of the color avoider method, as previously de-
scribed, is subject to limitations that must be taken into ac-
count. Specifically, the absence of depth information presents
a challenge in avoiding obstacles, and the color values of ob-
jects can be affected by lighting and orientation, resulting in
a wide range of colors that must be monitored, potentially
interfering with other objects. Additionally, as the number
of distinct objects increases, the challenges associated with
monitoring numerous color values grow more significant.
Moreover, the lack of a ”memory” to track how quickly the
pixel count changes for a given filter is regrettable. This capa-

bility would enable the program to initiate the turn command
only if a significant number of pixels of the same filter are
detected for several frames in a row, indicating that the ob-
servation is not an anomaly. Implementing this feature would
reduce instances in which the drone is unable to navigate out
of a difficult situation.
In summary, although the color avoider method is useful, al-
ternative approaches should be investigated to develop a more
dependable object avoidance system.

5 CONCLUSION

In conclusion, the objective of the project was to create
an obstacle avoidance system for a drone, with the ultimate
goal of competing in a 10-minute flying competition. Two
distinct approaches were implemented, optical flow and color
filtering. Optical flow was used to detect obstacles and com-
pute the distance between the drone’s camera and the obsta-
cle, while color filtering enabled the camera to detect specific
colors of objects. The team found that the optical flow ap-
proach was more effective in avoiding obstacles by adjusting
the flight radius, while color filtering was preferred for the
competition. Towards the end of the project, a new approach
using circular flight was developed to classify obstacles from
a single flow vector detection. The circular flight approach
had several advantages over straight flight, such as never hit-
ting the boundaries of the arena. Overall, the project was
successful in creating an obstacle avoidance system for the
drone, which could be used in future competitions, as we ob-
tained a distance of 67 meters in 10 minutes.

4

https://github.com/HAJEKEL/paparazzi/blob/orange/sw/airborne/modules/computer_vision/cv_detect_color_object.c

	Introduction
	Birds-eye view map construction and obstacle avoidance
	Vision concept
	Control concept
	Implementation

	Direct flow classification in circular flight
	Vision concept
	Control concept
	Implementation
	Shortcomings

	Colour avoider
	Colour filtering and finding thresholds
	Paparazzi implementation of Color Filtering
	bebop_course_orangeavoid.xml
	cv_detect_color_object.xml
	cv_detect_color_object.c

	Reflection on colour avoider method

	Conclusion

