
RRT and RRT* Motion Planning for a robot in a Parking Lot
Scenario

RO47005 Planning and Decision Making
Group 35

Bas van Vliet, 4594959
H.A. Jekel, 5609593

Y.J.P. le Gars, 5609577
Matti Lang 5632935

Abstract— This report presents a sampling-based motion
planning to autonomously move a robot along a trajectory
in a static environment in a parking lot scenario. Both RRT
and RRT* single query path planning algorithms were
implemented without the use of a planner module, and
investigated. A PD controller allows the robot, represented
by a kinematic bicycle model, to follow the computed path.
The results suggest that RRT* finds a shorter path in
exchange for a higher run time. Future research can extend
this work by looking into limited search RRT* algorithms.

I. INTRODUCTION

Solving the autonomous driving problem is one of the
biggest challenges in modern day engineering. In 2018,
nearly 1.35 million people in the world life’s were lost in
traffic accidents [1]. Mobile communication technology
is being developed to reduce traffic accidents caused
by human errors. Companies like Tesla, Waymo, and
Mobileye all have large teams working on this problem,
progressing to scalable full autonomous solutions. To
ensure safety, an autonomous vehicle must have the
ability to identify and avoid obstacles. An autonomous
vehicle has a sense layer to collect data about the
environment, a perceive layer that interprets the received
data, a motion planner layer that creates a path to the
goal and a control layer to control the vehicle to follow
the path.

This report focuses on the third layer of the au-
tonomous navigation problem: the motion planning of a
robot within a given environment map of a parking lot.
Two popular approaches for creating a graph through
a known environment are search-based algorithms and
sampling-based algorithms. Sampling-based algorithms
perform better than search-based methods in simple
scenarios. The scenario explored in this report is a
parking lot with static obstacles and only one actor,
which is why this report focuses on sampling-based
algorithms. Various sampling-based algorithms exist,
RRT is memory efficient as it does not need to keep a
discretized map of the environment in memory and it is a

lot faster other methods like A*, however it does not find
the optimal path. RRT* does a rerouting step in addition
to the steps in RRT, which enables it to asymptotically
find the optimum, with the downside that it is slower
then RRT. State of the art algorithms like informed
RRT*, RRT*-Smart, Q-RRT* and F-RRT*, build further
on RRT*, focusing on constraining the search area after
an initial path, but are more complicated [3].

The team wanted a fundamental understanding of the
methods, therefore, it was decided to focus on RRT and
RRT*, after which more advanced algorithms can be
investigated later. Nonetheless, RRT and RRT* provide
an interesting trade-off as aforementioned and therefore
makes for an interesting comparison.

The following work has been done by the team.
The team has implemented a kinematic bicycle model
to show the non-holonomic behavior or the robot and
build a PD controller to track the path generated by
the path planner. During the planning stage, all objects
were given a certain clearance from objects. This way,
we could guaranty that the path did not lead to any
collisions. Inline with our motivation of getting a fun-
damental understanding of the algorithms, the team has
implemented both RRT and RRT* without the use of a
planner module, using only the modules Pygame, math,
random, time, os, and matlibplot. The RRT method and
visualisation was implemented by following a video
tutorial [2]. However, the RRT* method and the bicy-
cle model and controller have been implemented with-
out following any tutorials. Nonetheless, A number of
sources were used for understanding various parts of
these problems such as: [3], [4] and [5].

II. ROBOT MODEL

A robot moving in a planar workspace, W ⊂ R2,
has a 3-dimensional configuration space defined as C =
R2 × S1. The motion of the robot can therefore be de-
scribed with respect to 3 variables (x, y, θ) that are being



subject to rolling and sliding constraints due to the non-
holonomic nature of the robot. Furthermore, the scenario
requires the robot to drive at low speeds. As a result,
the authors chose a simple constant velocity kinematic
bicycle model to represent the motion of the vehicle
[6] This is one of the simplest ways of representing
the motion of the robot under no-slip conditions while
still having the non-holonomic constraints in place. This
kinematic bicycle model also allows more focus on the
path planning and less time on the exact dynamics of the
vehicle. Moreover, a PD controller was used to follow
the path. While a PD controller gives no guarantees that
the robot will not clash into objects, it does provide an
effective and simple method to follow the path.

The kinematic bicycle model and controller are given
in Equation 1 to Equation 4. Here, the states are the x
and y position of the robot and the yaw angle ψ and the
input is the steering angle θψ̇ẋ

ẏ

 =

 v
Lfront+Lrear

cos(β)tan(θ)

v cos(ϕ+ β)
v sin(ϕ+ β)

 (1)

Where v is the forward velocity, Lrear and Lfront

are the positions of the rear wheel and the front wheel
from the center of the robot respectively, and β the slip
angle given by the equation:

β = tan−1(
Lrear

Lfront + Lrear
)tan(θ) (2)

The steering angle θ is given by the PD controller
using the error e. The error e is defined as the shortest
distance (normal distance) between the point of the robot
on the front wheel and the ’current’ edge. The front
wheel position is chosen instead of the center of the
robot because it causes less overshoot at the nodes. The
error e is calculated as shown by Figure 1. Only the
’current’ (L1) and the ’next’ (L2) edge are used. These
edges are shifted by 1 index if e becomes e2. Then the
error is given by e = min(e2, e3) and so forth.

θ = P ∗ e+D ∗ ė (3)

Fig. 1: How the error is calculated for the controller

The bicycle model is then simulated using:

ψt+1

xt+1

yt+1

 =

ψt + ψ̇dt
xt + ẋdt
yt + ẏdt

 (4)

III. MAP

The authors have decided to use Pygame to simulate
the environment. Pygame is a set of Python modules
designed for writing video games, simplifying the gen-
eration of a map, robot and moving obstacles. A static
scenario with objects generated at random locations
was used to implement the planning algorithms. Subse-
quently, a robot parking scenario is generated as the final
project. The Pygame visualization is shown in Figure 2.

Fig. 2: The map with the bicycle model following a path
found using RRT*

During the planning stage of the problem, the bound-
ing boxes are drawn around the parked cars to make
sure the path generated has enough clearance around all
the objects. This will generally make sure the robot will
not crash into these objects.

IV. MOTION PLANNING

The motion planning algorithm will depend on the
state of the environment. In other words, moving ob-
stacles will require local planning algorithms, whereas
global planning algorithms are best suited for static
environments. Due to its complexity, dynamical envi-
ronments have been discarded and the focus will be
on implemented efficient global planning algorithms.
Finding a balance between minimizing cost consumption
like distance travelled and the run time of the planning
algorithm will be a primary goal of this work. The first
step in the selection of the appropriate motion planning
algorithm for our robot model is to choose between
single or multi query methods. The difference is that
single query methods plan for one specific start and
goal configuration whereas multi query methods use the



same graph for multiple start and goal configurations
[5].A true autonomous car needs to navigate from an
initial state to a goal state without human intervention.
It needs to plan its own path and move along this path
until it reaches the destination. Since we have selected
a car-like robot it is more realistic to assume that our
environment is constantly changing and therefore we
will focus on single query methods in this report, namely
RRT and RRT*. RRT finds a cheaper solution to find a
feasible path from point A to point B. In RRT, points
are randomly generated and connected to the closest
available node [4]. At each iteration the algorithm checks
if the vertex and edges are collision free. When the goal
is reached, the algorithm backtracks to the start and the
shortest path is returned. However, RRT is not optimal
whereas A* is. RRT* is an optimized version of RRT.
There are two key additions to the algorithm: RRT*
records the distance each vertex has traveled relative to
its parent vertex and also it allows for rerouting [4].
The process of selecting least cost parent and rerouting
tree are the two most promising features of RRT* that
contribute to its asymptotic optimal property [8]. In our
approach we decided to first implement RRT and then
RRT* to easily compare the two algorithms.

This report will introduce the model in Section 2 and
explain the map and work/configuration space in Section
3, Then, Section 4 addresses the planning algorithms.
Section 5 and 6 show and discuss the results and finally
future work are considered.

V. RESULTS

A number of metrics are used to compare RRT and
RRT*. In general, we can divide the results into 2 parts,
first the metrics on the first path found, and second
on the final path found. The list below gives a short
description of the metrics that are used to compare the
methods. All the metrics are averaged over 10 runs to
minimize the significance of outliers.

• Avg iterations until path found - the average num-
ber of iterations needed to find the first path

• Avg nr. of vertices until path found - the average
number of vertices needed to find the first path

• Number of vertices (-) - the number of vertices that
are generated in a fixed number of iterations

• Avg run-time per iteration (s) - the average time
needed to complete 1 iteration

• Path length (UoL) - the length of the found path in
the local Unit of Length (UoL)

• accumulated error (UoL) - the total sum of errors
over the entire path. A metric used as a way to
judge how well the robot is able to follow the path

• normalized accumulated error (UoL) - the accumu-
lated error divided by the path length

Metric RRT RRT*
Avg iterations until path found 483 515

Avg nr. of vertices until path found 246 249
Avg run-time per iteration (ms) 5.7 5.9

Path length (UoL) 1786 1602

TABLE I: Comparison of RRT and RRT* on various
performance metrics for the first path found, averaged
over 5 runs

Metric RRT RRT*
Avg run-time per iteration (ms) 9.2 12.7

Number of vertices (-) 1883 1854
Path length (UoL) 1775 1331

accumulated error (UoL) 4456 4770
normalized accumulated error (UoL) 2.5 3.6

TABLE II: Comparison of RRT and RRT* on various
performance metrics for the final path found in 3000
iterations, averaged over 5 runs

Fig. 3: The path length found using RRT and RRT star
over the number of iterations

Figure 3 shows compares the path length of RRT and
RRT* with respect to the number of iterations. We can
see that the number of iterations does not affect RRT.
However, with RRT* the path length reduces sharply
until about 2000 iterations. After this threshold, the path
length continues to decrease with the number of itera-
tions but only minimally. Figures 4 and 5 show visual
results from our Pygame implementation of both RRT
and RRT* respectively The obstacles are represented in
gray and we added bounding boxes (represented in red)
so that our robot model avoids the obstacles with some
clearance. In Figure 4 we can see that RRT returns a
successful solution from start to goal but clearly does
not take the optimal path. In Figure 5 we see that
RRT* with 3000 iterations shows an improved solution
in comparison to RRT.



Fig. 4: A path found using RRT.

Fig. 5: RRT* - 3000 iterations. note the difference in
pattern with RRT and observe visually that the path of
RRT* is shorter

VI. DISCUSSION

The results demonstrated that RRT* has better
performance over RRT with regards to finding the
shortest path. Table I show that the initial path found
by RRT* is 11% shorter than that found by RRT.
This difference only becomes large when looking
at Table I where this increases to nearly 30%. This
demonstrates that as iterations increase RRT* keeps
reducing the cost. On the other hand RRT* still has a
greedier run time explained by its more complex nature.
This is especially true as the number of iterations are
increased. RRT is probabilistic complete which means
that the probability of finding a path is 1 with the
running time of the algorithm going to infinity, as
long as a solution exists. RRT* in addition, ensures
asymptotic optimality. According to [3] RRT* never
reaches that optimality in finite time and the rate
of convergence is rather slow. Another limitation is

that these methods work in the configuration space,
provide a path sequence of configurations that the
robot needs to be in but they do not account for time.
Therefore, moving obstacles are not accounted for and
obstacle avoidance methods need to be implemented
in addition. The implemented controller is simple and
works reasonably well as long as the error stays small.
However, if the robot deviates to much of the path,
it could switch to the error of the ’next’ error even
though it should still follow the ’current’ error. This
especially happens at tight corners, when the turning
radius of the robot is too large to follow the path.
Interestingly, the average nomalized accumulated error
of RRT* was larger then that of RRT, even though the
path generated by RRT* is smoother along straight
lines. The explanation here is that RRT* makes sharper
corners around obstacles, and this path is harder to
follow by the PD controller which makes it deviate
from the path a lot. This effect could be mitigated
by minimizing the length of the robot such that the
turning radius is smaller but should be addressed further.

Finally, the authors like to discuss avenues for
future work. Derivatives of RRT* have been proposed
to address the shortcomings of RRT and RRT* such
as RRT*-Smart proposed in [3] which instead of
employing a purely random space exploration performs
an informed exploration of the search space. Since the
authors now have a code base with a large amount of
flexibility, it would be an interesting step to extend the
current code with such an algorithm. Different paths
generators such as Dubins path which connects the
path vertices in a smooth fashion can make the path
more smooth and improve the path following. Different
controllers can be explored such as model predictive
control to improve the path following of the robot.
Finally, more challenging scenarios can be explored,
for example with moving objects and local obstacle
avoidance algorithms.

REFERENCES

[1] World health organization. In: Global Status Report on Road
Safety, (2018).

[2] M. Boumediene, Autonomous car simulated with pyhton. In:
https://www.youtube.com/watch?v=Tllz7Ox2B3gt=381s, (2021).

[3] J. Nasir, F. Islam, U. Malik, Y. Ayaz, O. Hasan, M. Khan,
M. Muhammad, RRT*-SMART: A Rapid Convergence Implemen-
tation of RRT*. In: International Journal of Advanced Robotic
Systems, Vol 10, issue 7, (2013).

[4] T. Chin, Robotic Path Planning: RRT and RRT*. In:
https://theclassytim.medium.com/robotic-path-planning-rrt-
and-rrt-212319121378, 2019.

[5] S. M. LaValle, Planning Algorithms. In: Cambridge University
Press, (2006).

[6] Y. Ding, Simple Understanding of Kinematic Bicycle Model.
In: https://dingyan89.medium.com/simple-understanding-of-
kinematic-bicycle-model-81cac6420357, (2020).



[7] S. Karaman, E. Frazzoli, ”Sampling-based algorithms for optimal
planning”, Int J Rob Res, vol. 30,pp. 846-894, 2011.

[8] B. Liao, F. Wan, Y. Hua, R. Ma, S. Zhu, X. Qing, F-RRT*: An
improved path planning algorithm with improved initial solution
and convergence rate. In: Expert Systems with Applications, Vol.
184, 115457-115473, (2021).


	INTRODUCTION
	ROBOT MODEL
	Map
	MOTION PLANNING
	RESULTS
	DISCUSSION
	References

