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ABSTRACT: This paper presents the deep learning approach to help the visually impaired in an object detection
task: recognising the gender of people in their proximate surrounding. By use of images coming from a RPI
WWCAM2 monocular camera, the person is first detected , i.e. localized in the image, and then classified to
one of the two genders. In order to perform gender detection in real-time, the use of transfer learning together
with a single-stage object detection algorithm was investigated. Based on the number of processed frames per
second (FPS) and the mean average precision (mAP), it was concluded that fine-tuning a pre-trained YOLOv4
algorithm on customized versions of the Pascal VOC 2007 dataset and the CelebA dataset is best suited for this
task.
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1 INTRODUCTION

In 2017, nearly 253 million people in the world
suffered from some form of visual impairment [8].
With white canes and guide dogs currently preventing
a large number of head-level and fall accidents [6],
their assistance does not reach the level of social
scenes and human interactions [7]. Besides directly
asking about peoples’ gender, the visually impaired
rely largely on the frequency of someone’s voice and
other sound cues to determine their gender. Voice fre-
quencies and sound cues can be misleading, causing
awkward social situations for the visually impaired.
Moreover, environments such as public transport
and public libraries do not always allow for the
gathering of this auditory information. Localisation
of people and classification based on their gender in
an unknown environment would help to fill this social
gap.

In this paper, the Deep Learning (DL) approach
is investigated to assist the visually impaired - later
referred to as ’users’ - in their social interactions,
while gaining a better understanding of their en-
vironment. Using DL, an artificial visual system
can be produced that replaces the relevant parts and
functionalities of the visual organ and central nervous
system. Such systems are currently being explored
in the car manufacturing industry in the form of au-
tonomous cars [2]. Applied to the visually impaired,
a head mounted camera replaces the sensory organs
(eyes) and a single-board computer (SBC) equipped

with a trained object detection model capable of
detecting people and classifying them, replaces the
image processing part of the central nervous system.
The main challenge of such artificial systems is to
make them run in real-time.
Besides the need for real-time running speed, the
accuracy is also of high priority. With these two
metrics in mind, the object detection architecture is
optimized. It should be noted that gender dysphoria
can not be considered by the gender classification
system discussed in this paper. The classification is
therefore purely based on the biological sex. The
main aim of this paper is to find the best DL object
detection architecture to accomplish this real-time,
accurate processing of Red-Green-Blue (RGB)
images received from the person mounted camera.

1.1 Previous solutions to challenges in pedestrian-
and face detection

The problems of using DL for gender detection are
rather specific and resources from previous solutions
are therefore scarce. However, one such resource can
be found in face detection, one of the oldest com-
puter vision applications. The computer vision prob-
lem in gender detection is very similar to the prob-
lem in face- and pedestrian detection, since facial and
bodily features are involved in both person localisa-
tion and gender classification [19]. Previous face de-
tection algorithms, such as the Viola-Jones detector
[12], have greatly stimulated the progression of DL
applications in today’s object detection systems [19].



The histogram of oriented gradients (HOG) detector
became widespread in 2005 as one of the first pedes-
trian detectors[14] and the integral channel features
(ICF) detector was introduced in 2009 as a pedestrian
detector [15]. They formed a solid foundation for gen-
eral object detection in terms of the feature represen-
tation and the design of classifiers [19]. The faster,
region- based convolutional neural network (RCNN)
developed in 2015 was proposed as a robust two-stage
pedestrian detector [18]. The Faster RCNN did al-
low for high detection accuracy, but failed to run in
real-time. Recently, one-stage object detectors such
as single shot multi-box detector (SSD) [38], Reti-
naNet [37] and you only look once (YOLO) version
4 [21] are surpassing the two-stage object detectors in
terms of accuracy and run in real-time [19].

1.2 Traditional detection methods influences in DL
detection methods

Traditional detection methods were built based on
handcrafted features [19]. The Viola-Jones (VJ) al-
gorithm achieved real-time human face detection for
the first time without constraints using integral im-
ages, allowing for window size independent compu-
tational cost, feature selection and detection cascades
[12] to successively pass strong classifiers that each
focus on specific features to eliminate ’negative’ input
faster. Following the VJ algorithm, the HOG [14] and
the subsequent deformable parts model (DPM) [13]
brought new highly influential methods to the field
of object detection, with DPM representing the peak
of traditional detectors. Surpassing these highly in-
fluential traditional methods in terms of accuracy, is
the DL-based method. There are, however, some con-
cepts from traditional methods that are still present in
this modern DL method:

• Hard negative mining
The process of dealing with the high foreground-
background class imbalance by only using
poorly localized positives as negative examples
leading to substantially better results. An in-
stance is considered hard if it surpasses a loss
threshold [29].

• Bounding box regression
DPM [13] was the first model to ever use bound-
ing box regression. It uses bounding box re-
gression to fine-tune the bounding box prediction
presented by the DPM. Therefore it can be seen

as a post-processing step.

• Non-max suppression
A post-processing step to remove the replicated
bounding boxes and obtain the final detection
result. The most common method to apply
non-max suppression is Greedy selection [19].
For a set of overlapped detection’s, it selects
the bounding box with the maximum detection
score, while its neighboring boxes are removed
according to a predefined intersection over union
(IoU), which is the ratio of the intersection of two
images over their union. This process is then it-
erated for all such sets in a greedy manner. This
technique was used in HOG [14] and DPM [13].

2 A DEEP LEARNING BASED GENDER DE-
TECTION SYSTEM

Globally, over a quarter of a billion people suffer
from visual impairment [8]. These people struggle to
initiate social interactions, as they are often unaware
of the location and gender of others. Social inter-
action is a critically important contributor to good
health and longevity [10]. Assistance in localizing
and classifying people based on their gender is
therefore essential, as current aids such as canes and
guide dogs fail to do so [7].

With the help of an artificial visual system con-
sisting of a head mounted camera that sends RGB
images to a SBC that is equipped with a model
capable of detecting and classifying people, one
could detect gender or even identify the person on an
image. Such a concept is known as a gender detection
- or more generally - as an object detection problem.

In an object detection problem, one strives to find
and classify a variable number of objects on an im-
age, see figure 1. The variation originates from the
changing number of objects in an image (dynamic en-
vironment). This describes the main difference be-
tween the object detection and the classification prob-
lem. In addition to classification, the main challenge
in an object detection problem lies in the object lo-
calization task. The object detection problem faces
several general challenges and issues, the gender de-
tection problem faces some more specific challenges.
A more general challenge, the ’objects under view-
point variation’ challenge, can cause the object to dif-



Fig. 1: Object detection: variable number of objects [53].

fer in appearance from various angles. Multi-scale
detection is another general challenge, caused by the
size difference of objects in an image when they are
close by or far away. ’Illuminations’ is a third ex-
ample, where different lighting conditions can cause
pixel values to change non-uniformly. ’Object rota-
tion’ and ’accurate object localization’ are two other
examples of general challenges [19]. Specific chal-
lenges faced in gender detection are very similar to the
specific challenges faced in pedestrian- and face de-
tection, since features of both the face and body are in-
volved in person localisation and gender classification
[11]. These specific gender detection challenges in-
clude intra-class variation, occlusions, hard negatives
and real-time detection. Intra-class variation refers
to the uniqueness of human expressions, skin color,
poses and movements. Due to the dynamic behaviour
of people, face occlusions are common, making it dif-
ficult to detect the face. Hard negatives are encoun-
tered when backgrounds contain pedestrian-like fea-
tures [11]. Lastly, real-time detection is essential, as
in dynamic environments people move around chang-
ing positions constantly.

The DL approach is used in this paper to solve
both the localization and classification challenges. A
DL object detection model is a complex mathemat-
ical function that maps RGB images to bounding
boxes and class predictions. This complex function
is learned through a process called training, in which
the detectors predictions are compared to the ground
truth label. The comparison leads to the computation
of a cost when the prediction and ground truth are not
identical. The optimization problem in which the de-
tectors’ weights are adjusted as to minimize the cost
then leads to a function that is able to perform the
aforementioned mapping. To train the model, a set
of annotated RGB images collected by the RPI WW-
CAM2 monocular camera could be utilized to train
the DL object detection model. However, consider-
ing the high costs in terms of time and effort to create

such a dataset, a novel methodology presented in Sec-
tion 5.2 is considered.

3 METHODOLOGY

This section starts off with an analysis of both two-
stage and one-stage object detectors as a potential
candidate for the DL gender detection model. It then
substantiates the convergence to the cutting edge one-
stage detectors, for which the numerical results are
given in section 4.

3.1 Multi-stage detectors

One possible object detection architecture for a
gender detection system is the RCNN architecture
(2014) proposed by [18], figure 3. RCNN uses
the divide and conquer approach, as it divides the
complex object detection task in 3 stages, see figure .
First, a selective search algorithm is used to propose
regions of interest (RoI) in the image that might
contain an object by adding a bounding box. The
region proposals are then warped (re-scaled) and fed
into a convolutional neural network (CNN) to extract
their high level features (backbone). These features
are further processed in a few fully connected layers
(neck). Finally, the regions are classified using
a support vector machine (SVM) classifier, also
referred to as large margin classifier. To refine
the initially proposed bounding box coordinates
of the object, bounding box regression is applied.
The classification part, together with the bounding
box regression part of the architecture, is referred
to as the head of the architecture. This two-stage
sparse architecture is displayed in figure 2. With a
post-processing step called non-max suppression, the
redundant bounding boxes that detect the same object
are removed [18, 38, 37, 25, 26, 27, 28].

A big limitation of the RCNN is the inability to
process images of different sizes. RoIs need to be
re-scaled before the RCNN can process them, as the
fully connected layers in the neck require a fixed
input size [40]. SPP net uses pooling layers with
a fixed amount of bins (independent of the input
size) to process the CNN’s output feature maps,
concatenating them, resulting in fixed size output, see
figure 4. This is faster than cropping and warping
like RCNN, because the feature maps only need to be
calculated once as the RoIs are mapped to the feature



Fig. 2: Architecture of two-stage and one-stage object detectors [28].

Fig. 3: RCNN: devide and conquer [16].

maps using the sub-sampling ratio (spatial scale
ratio from input image to feature map). However,
the SPP layer simultaneously presents an additional
challenge, as back-propagation (a process needed to
train the detectors weights) through the SPP layer is
limited due to the multiple filters used. Therefore,
when implementing the SPP layer, one requires
multi-stage training: training the backbone separately
from the neck and the head [40].

Fig. 4: RCNN: devide and conquer [40].

A more promising base architecture for gender detec-
tion is the Fast RCNN (2015), as it solves the back-
propagation limitation faced by SPPNet by removing

all spatial pooling filters, except one.[17] This allows
for simultaneous training of the backbone, neck and
head, while only calculating feature maps once. Fast
RCNN also introduces multi-task loss, including both
localization and classification. In the multi-task loss
function, cross entropy loss and smoothL1 loss are
combined, resulting in a single optimisation problem.

Another possible base architecture for a gender detec-
tion system is the Faster RCNN (2015) [18]. The au-
tors introduced the region proposal network (RPN) as
a substitution for the selective search algorithm [18].
The structure of the RPN is supported by a convolu-
tional implementation of sliding windows [48], allow-
ing for convolutionally implemented, fully connected
layers [24]. Faster RCNN brought another innovation
to the DL detection field, namely proposing an anchor
of fixed scales and aspect ratios based on the size and
shapes of objects contained in the dataset. The region
proposal network proposes these anchor boxes of dif-
ferent scales and aspect ratios for each of the sliding
windows and additionally predicts if it contains an ob-
ject. If it does, it becomes a RoI and is fed into the
second stage where classification and bounding box
regression is applied to the anchor boxes containing
objects, refining their localisation (sparse prediction,
figure 2). Proposing multiple anchor boxes of differ-
ent scale and aspect ratios allows the output units of
the RPN to specialize for a certain shape and allows
for the detection of multiple objects in one window.

In conclusion, some of the redundant steps of the
multi-stage objet detectors were solved, e.g. by re-
placing warping by spatial pyramid pooling [40], al-
lowing for shared computation in the second stage
and by replacing the selective search algorithm by
the RPN in the first stage. For real-time applications,
however, the multi-stage detector architecture remains



insufficient [25].

3.2 One-stage detector

The one-stage detector combines both localization
and classification in a single CNN. The general idea
of a one-stage detector is to first feed an image into a
CNN (the backbone) and combine its extracted fea-
tures maps in the neck. Lastly, the head assigns
bounding boxes to the objects and allocates class
probabilities, predicting which class is most likely
contained within the bounding box. This dense one-
stage object detection architecture is displayed in fig-
ure 2.

Another possible base architecture for gender detec-
tion was proposed by the autors of the YOLO algo-
rithm (2016), see figure 5. They recognized that the
speed limitations of Faster RCNN can be traced down
to its two-stage architecture. They were the first to
explore the idea of merging the two-stage object de-
tection architecture into a single stage, only looking
once at the input image [25]. The YOLO architecture
is very similar to the architecture of the first stage of
the Faster RCNN two-stage detector. The big differ-
ence from Faster RCNN however, is that YOLO adds
class predictions directly which removes the need for
a second stage. Another difference is that YOLO does
not implement the multiple anchor boxes for each
window, as introduced by Faster RCNN. This causes
the YOLO algorithm to struggle with detecting small
objects. The authors decided to tackle the problem
of multiple-scale detection in their second version,
YOLOv2 (2017), by using multiple anchor boxes of
different size and scale for each window [26], as pre-
viously proposed by Faster RCNN. Although able to
process images in real-time, the YOLOv2 architecture
could not match the Faster RCNN accuracy.

Fig. 5: The SSD architecture (top) and the YOLOv1 architecture
(bottom) [38].

3.3 SSD

The base architecture of the SSD, figure 5, can be con-
sidered as a serious candidate of the gender detection
system, as it represents a state of the art object detec-
tion architecture. Similar to YOLOv2, SSD utilizes
the Faster RCNN-proposed bounding boxes of differ-
ent scales and aspect ratios to optimize the accuracy.
Additionally, SSD proposes the idea of basing the pre-
diction on intermediate feature maps together with the
output feature map. YOLOv1 and YOLOv2 can only
predict based on the output feature map. This is de-
noted in figure 5 with the line connections between
the intermediate feature maps and the output layer
for SSD and the line connection between the output
feature map and the output layer for YOLOv1 and
YOLOv2. To solve the class imbalance problem as
stated in section 1.2, SSD picks the negative predic-
tions with the highest loss and makes sure the ratio
between the picked negative and positive predictions
is at most 3 to 1. Hence, only the gradients of a very
small part of samples (those with the largest loss val-
ues) will be back-propagated. This is process is called
online hard example mining (OHEM). [29]

3.4 RetinaNet

Fig. 6: RetinaNet neck: Feature pyramid network [44].

Another serious candidate is RetinaNet. RetinaNet
was the first one-stage object detector to surpass the
two-stage object detectors in accuracy. RetinaNet
uses a feature pyramid network (FPN) neck on top
of a ResNet backbone (see figure 6) [37, 44]. The

Fig. 7: Residual Learning: a building block [39].

ResNet architecture added a revolutionary component



to CNN’s called the skip-connection, (see figure 7)
[39]. It feeds forward information, solving the van-
ishing/exploding gradient problem faced in deep neu-
ral networks. Using skip connections the network
can easily learn the identity function, allowing deeper
CNN’s to continuously improve performance. The
FPN neck uses transpose convolutions to build a spa-
tially larger feature map from the spatially smaller
deeper feature map. It then combines the enlarged
feature map with feature maps from earlier layers of
the same size and making predictions based on their
combination [44]. The component of RetinaNet that

Fig. 8: Focal loss [37].

made it a breakthrough detector was the focal loss,
see figure 8. Focal loss addresses the extreme im-
balance between foreground and background classes
during training. The autors reshape the standard cross
entropy loss so that it will put more focus on hard,
miss-classified examples.

3.5 YOLOv4

YOLOv4 claims the last position as a serious candi-
date for the gender detection system. It consists of a
CSPDarknet53 backbone, adding a SPP module (fig-
ure 4) and replacing the FPN neck by a PANet [41]
(figure 11) neck, while retaining the YOLOv3 head.
Cross-stage partial connection is a DenseNet [32]
based architecture. Densnet, figure 9, uses ResNets’
idea of skip connections and connects everything to-
gether to facilitate backpropagation during training.
[32] CSP uses the same filosofy, but removes the du-
plicate gradient information generated by DenseNet.
[36]. The PAN neck is an improved version of the
FPN neck, as can be seen from figure 6 and figure 11
[41].

Fig. 9: DenseNet architecture [32].

Fig. 10: CSP [36].

4 NUMERICAL RESULTS

In this section, a numerical analysis of the three state
of the art one-stage object detectors - SSD, RetinaNet
and YOLOv4 - is outlined based on a literature search.
This will result in the selection of the most appropri-
ate one-stage detector for implementation in gender
detection.
As stated in the introduction, the gender detection sys-
tem should be optimized for both speed and accu-
racy. To measure the accuracy, it is important to first
think about what might occur in different detection
failure scenarios regarding gender detection. When a
false positive occurs, the user might start a conversa-
tion using the wrong gender, or even worse, the user
might start talking to a brick wall. To prevent this, the
precision of the detector should be optimized (figure
12). On the other hand, it is important to think about
what would happen if the detection system fails to de-
tect someone. With this failure, an opportunity for a
social interaction is lost, failing to pursue the main
goal: facilitating users in social interactions. To make
sure that the system is useful, recall should be opti-
mized (figure 12). Another object detection measure
for accuracy is the mean Average Precision (mAP).
When optimizing the mAP, one optimizes both pre-
cision and recall. The mAP is therefore well suited
as a measure of accuracy for gender detection. It
is determined by computing the average of the ar-
eas below the precision and recall curve, for all ob-



Fig. 11: PAN [41].

Fig. 12: Precision and recall [23].

ject classes, to a certain IoU true positive threshold.
Specifically, here the mAP@0.5:0.05:0.95 is used. To
compute mAP@0.5:0.05:0.95, one takes the average
of the mAP’s for the IoU thresholds ranging from 0.5
to 0.95 with step size 0.05. The FPS is a common
metric to compare the processing speeds of different
object detectors. In order to compare the three state
of the art object detectors, their mAP@0.5:0.05:0.95
(in table 1 referred to as AP) and FPS are displayed in
table 1. Here, the detectors are trained and tested on
the MS COCO dataset containing 350.000 labeled ob-
jects and 80 different object categories. Table 1 shows

Table 1: Comparison of the speed and accuracy of SSD, Reti-
naNet and YOLOv4 on the MS COCO dataset (with batch=1
without using tensorRT).

Method Backbone Size FPS AP
SSD VGG-16 512 22.0 28.8
RetinaNet ResNet-101 500 11.1 34.4
YOLOv4 CSPDarknet-53 512 31.0 43.0

that YOLOv4 is the best object detection architecture,
as it performs better in both FPS and AP compared to

the other object detectors.

5 METHODOLOGY FOR FURTHER RE-
SEARCH

Since this papers’ results are based exclusively on lit-
erature research, this section discusses how to per-
form further research to select the best of the three
state of the art one-stage object detector architectures
for gender detection.

5.1 Experiment

To quantitatively compare the three single-stage ar-
chitectures for gender detection, they must all be pre-
pared identically. First, weights of each single-stage
detector that are pre-trained on the MS COCO dataset
[49] will be collected from the authors. As the first
layers of the backbone always learn to extract general,
low level features (e.g. edges, circles) almost inde-
pendent of the dataset, the pre-trained weights allow
for the model to use these low-level features to con-
verge to the gender dataset faster. During fine-tuning,
the subsequent layers will learn to extract high-level
features which are able to distinguish between male
and female. Before fine-tuning, the head of the pre-
trained model is removed and a gender detection head,
containing only the male and female object classes,
is added. The detector is then fine-tuned on a cus-
tomized gender detection dataset, as is discussed in
section 5.2. The head substitution and the fine-tuning
process together is referred to as transfer learning
[31]. Freezing certain layers before fine-tuning is an-
other common practice which could be exploited. To
determine a suitable number of epochs for fine-tuning,
the pre-trained YOLOv4 network is fine-tuned first on
30 epochs of the training set as fine-tuning requires
fairly little training. A plot of the loss during train-
ing then allows to determine an appropriate number of
epochs to train the models. During training, all 3 loss
functions are plotted, allowing to check for proper
training behaviour. To quantitatively compare the 3
object detectors both FPS and mAP are used. Fol-
lowing training, a testing set is used to compare the
models on their mAP and FPS.

5.2 Dataset

To make sure that the final gender detection sys-
tem best assists the users in their social interactions,



it is important to apply both a model-centric and a
data-centric approach to the design of the system.
The results section of this paper compares different
models on their speed and accuracy given a fixed
dataset: a model-centric approach. However, it is
essential to also have a data-centric approach, em-
phasizing the creation of an efficient learning dataset.
This translates to the current application by using the
application-specific camera to record social situations
that users will encounter. Besides the privacy issues
regarding the personal data of users, one needs to con-
sider the high costs in terms of time and effort to cre-
ate such a dataset. For each image, an annotator needs
to draw a bounding box around the identified peo-
ple and classify them as male, female or unknown.
Time constraints and limited resources may not al-
low for creation of such a dataset. The only avail-
able application-specific datasets seem to be those
created by de Araujo and colleagues [22]. The con-
tribution of said authors [22] exists of two new gen-
der datasets. First they customized the Pascal VOC
2007 [50] dataset. VOC originally contains 20 ob-
ject classes, including people captured at different
poses and occlusions. The authors first removed all
classes except for the person class and then added la-
bels ’man’, ’woman’ and ’undefined’ to these bound-
ing boxes. This dataset consists of 4192 annotated
images with 4381 instances of men, 3210 instances of
women and 3083 instances of persons with undefined
gender. The dataset comes with challenges, as images
usually contain a high variation of poses, occlusions,
intersections and multiple instances. As this dataset
is small in comparison to regular fine-tuning datasets
[23], the authors of [22] also provided a customized
version of the CelebA [52] dataset. This dataset con-
tains faces with their annotated gender and bounding
boxes that surround the faces. However, as bodily fea-
tures might also be useful to detecting gender, the au-
thors ran a person detector over the CelebA dataset
to adjust the bounding boxes. For training and test-
ing, they analyzed the use of different proportions of
each dataset, concluding that a 50-50 distribution is
optimal. A K-folds validation scheme, where a ran-
dom selection from the customized CelebA and VOC
datasets is used for each epoch, would be most appro-
priate in training. As the detector learns using labeled
data, the corresponding estimation problem can be de-
scribed as supervising [23]. As discussed, the best
option for training an algorithm is currently described
by [22] and it seems clear that improvements can be

made on the data side of things. Therefore, it is pro-
posed that further research should contribute newly
annotated datasets, taking, for example, the persons
in the MS COCO dataset and annotating their gender.

5.3 Hardware implementation: the artificial visual
system

Here, a set-up of the artificial visual system prototype
is discussed. The best gender detection model is up-
loaded onto a Raspberry Pi (RP) 3. A Raspberry Pi 3
is chosen to be the SBC as it is a small, portable and
concealable device. A head mounted RPI WWCAM2
monocular camera feeds the RGB images through a
RP camera serial interface to the model. The gender
detection model then sends the detection information
to an audio program that will forward key words to
the user via a wired earbud. To power the system, a
portable power module is linked with the Raspberry
Pi. The full gender detection models are large in size
and computational cost. If the models appear to be
too large after initial experimentation, the models will
be post-processed using TensorflowLite [51] to reduce
their size and computational cost.

6 CONCLUSION

The main aim of this thesis was to find the best deep
learning object detection architecture for a gender de-
tection model to aid the visually impaired in their so-
cial life. A literature comparison of the three state
of the art object detection architectures showed that,
from the three one-stage object detection architec-
tures, the YOLOv4 architecture outperforms all other
architectures. Therefore, based on this research, the
YOLOv4 architecture seemingly has the most poten-
tial for the artificial visual system. To support this
conclusion, further research should aim to modify the
head of the three state of the art object detection ar-
chitectures to the gender detection task, train and test
the modified architectures on a representative gender
dataset, and finally compare the numerical results.
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