Automated retail store restocking using PDDL and ROSPlan

RO47014 Knowledge representation and symbolic reasoning
Henk Jekel, 5609593

Abstract—The report describes a task planning solution
utilizing PDDL and ROSPlan for robot restocking in a
retail store. The intial PDDL knowledge base contains the
world model. ROSPlan is used to extend the knowledge
base based on a product ontology. The ontology uses store
rules: explicit regulations that determine on which table
products should be placed based on product characteristics.
A plan is produced based on the extended knowledge base.
The proposed KRR system has significant implications for
the automation of stock management processes in retail
stores.

I. INTRODUCTION

The global rise of the elderly population has resulted
in a scarcity of labor, particularly in developed nations
with aging societies [1]]. In contrast, the ever-expanding
retail sector necessitates a greater workforce to maintain
its operations and bring its products closer to consumers.
To meet this demand, service robots can be deployed
to relieve humans of repetitive duties, reduce cost for
retailers while simultaneously ensuring the maintenance
of service quality, supporting the growth of the retail
industry [2]. A core component of such a service robot
is task planning: Organising actions to achieve goals,
before starting to execute them [3|.

The project aims to implement a solution where a
robot can pick up a set of products and place them in the
correct locations within a simulated store environment.
The used locations will be a stock table, a refrigerated
table, a bin, and a non-refrigerated table. Products that
have been damaged on the way to the store should not
be stocked but discarded. A damaged product has lost
part of its contents and has a reduced weight. The robot
needs to acquire information about the properties of each
product that imply whether it needs to be refrigerated or
not, and whether the product has been damaged based
on its mass. The robot will have to use this information
and reason on where to place each product based on a
set of fixed store rules.

This report presents a solution to a task planning prob-
lem for a simulated retail store restocking process. The
solution uses a knowledge representation and symbolic
reasoning (KRR) approach, figure (1] It enables the robot
to reason about the best course of action based on its
understanding of the environment and the objects within
it, described in the initial knowledge base. The Planning
Domain Definition Language (PDDL) [4] framework and
ROSPIlan [5] are employed to achieve the reasoning
and planning required for the task. These components

allow for informed decision-making based on a set of
store rules and knowledge about the environment and
the objects within it.

The solution incorporates a Python-based ontology
that defines the product classes. By leveraging this
ontology, the robot is able to perform task planning of
a specific product instance by adding the appropriate
predicates and goal state based on the ontology for the
specific product instance to the initial knowledge base.
The program adds a planning goal for each product
instance based on its class. The generality of the on-
tology allows the robot to have a minimal amount of
information on each product and still find a plan that is
efficient and robust, even when faced with an unknown
product.

The building blocks of the solution allow for
handling of more complex scenarios if required. The
goal of the report is to demonstrate a working solution
that showcases the benefits of using an ontology for
product generality. This allows the robot to have a
compact knowledge base for task planning. By using
this approach, the project aims to achieve greater
efficiency, accuracy, and adaptability in decision-making
in complex retail store environments.

Simu'la@
\<7/

Fig. 1: Blockdiagram of the task planning

- World model

- Product info
- Planning goal

II. WORLD MODEL AND KNOWLEDGE BASE

Figure |2 illustrates the solution to the task planning
problem, which utilizes a PDDL domain file containing
durative actions for transferring product instances from
the stock table to their respective goal table. An initial
problem file is also provided, specifying the initial en-
vironment state and robot state. Section [[IZAl elaborates
on the creation of this initial knowledge base within the
PDDL files. To enable the planner interface, explained
in sectionIl), to perform task planning based on the
complete knowledge base, a python script in the form of
a problem interface is employed. This script reads a list
of product instances and feeds it to a product ontology,
which provides the initial product information and goal

https://gitlab.tudelft.nl/cor/ro47014/2023_course_projects/group_03/rosplan/-/blob/main/retail_store_planning/load_product_info.py

state. The script then incorporates the product informa-
tion and respective goal state into the knowledge base
for each product instance, as discussed in section [[I-B]
The knowledge base now forms a complete abstraction
of the simulated world illustrated in figure [3] allowing
the planner interface to solve the task planning problem.

Problem
Interface

problem instance

Planner
Interface

planner output

problem_path

Knowledge
Base

Fig. 2: The flow of information from KB to planner [5]

A. Initial knowledge base

The simulated world used in the Gazebo simulator is
illustrated in Figure 3] As mentioned in the introduction,
the world model has four tables, one for each product
class, and they have been labeled as follows:

wp_table_1: Stock
wp_table_2: Refrigerated
wp_table_3: Bin
wp_table_4: Shelf

wp_table_4 3

wp_table_1
wp_table_2

wp_table_3

Fig. 3: The simulated world

The PDDL files use first-order logic to describe rel-
evant aspects of the world in a structured and formal
language. Specifically, predicates of arity 1 are employed
to verify whether the robot is at a table waypoint. These
predicates take the current waypoint of the robot as an
input argument and compare it to the constant table
waypoint to check for a match. As such, the predicates
are denoted as table_name/lI. The model includes a
single robot with one gripper, which can move from
waypoint to waypoint (robot-at/2). The waypoints are
situated adjacent to the tables (wp_frable_x where x
denotes the table number), with a starting waypoint
wp0 where the robot base begins when the simulation
initiates. The waypoints.yaml file represents the six de-
grees of freedom (DOF) coordinates that describe the

position and orientation of the waypoints within the
gazebo world frame. Additionally, the |objects.yaml file
contains the six DOF coordinates at which products must
be picked up, while the place.yaml file contains the six
DOF coordinates at which products must be placed.

The structured and formal language used to represent
the state of the robot gripper in the PDDL files employs
two predicates, free/I and not_free/I, which are mutually
exclusive. In addition, the gripper can hold an object,
which is captured using the is_holding/2 predicate. The
products that require stocking are classified as objects in
the PDDL types, and their location is tracked through the
use of the object-at/2 predicate, which verifies whether
an object is present at a specific waypoint. The initial
position of all products is the stock table at waypoint
wp_table_I. To indicate whether a product has been
damaged on the way to the store and should be dis-
carded, two mutually exclusive predicates, is_full/l and
is_not_full/l, are defined. Similarly, to represent the need
for refrigeration, the predicates is_refrigerated/l and
is_not_refrigerated/l are implemented. When an object
is successfully stored at its intended destination, it is
assigned the stored/I predicate.

The mutually exclusive predicates discussed are
negated versions of each other. Although PDDL pro-
vides the option to negate existing predicates by adding
not, this feature is not supported by the POPF planner
employed in the solution represented in this report.
Therefore, the design choice was made to define the
negated version of the predicates. This workaround is
further discussed in Section [Tl

B. Problem interface

Upon running the [rosplan_place.launch| file, the
ROSPlan system is initiated. This loads the PDDL
domain and initial problem into the ROSPlan knowledge
base. Additionally, the [oad_product_info python
program is executed. This file transforms a product
with its name, type and weight into a ROS service
that adds the instance of the product as an object to
the knowledge base. The program then adds the right
predicates to the object into the knowledge base and
finally adds a goal table on which the object should be
stored into the knowledge base. The python program
requires the product list, which contains the apriltag
name, type of product (currently hagelslag and yoghurt),
and the product weight. The load_product_info program
utilizes a product ontology and is aware of the weight
of full products and whether they require refrigeration.
Then, depending on the product type, the knowledge
base is extended with the appropriate predicates for
its weight and refrigeration requirements. Once the
necessary information of a product is added to the
ROSPlan knowledge base, a concatenation of durative

https://gitlab.tudelft.nl/cor/ro47014/2023_course_projects/group_03/rosplan/-/blob/main/retail_store_planning/config/waypoints.yaml
https://gitlab.tudelft.nl/cor/ro47014/2023_course_projects/group_03/rosplan/-/blob/main/retail_store_planning/config/objects.yaml
https://gitlab.tudelft.nl/cor/ro47014/2023_course_projects/group_03/rosplan/-/blob/main/retail_store_planning/config/place.yaml
https://gitlab.tudelft.nl/cor/ro47014/2023_course_projects/group_03/rosplan/-/blob/main/retail_store_planning/launch/rosplan_place.launch
https://gitlab.tudelft.nl/cor/ro47014/2023_course_projects/group_03/rosplan/-/blob/main/retail_store_planning/load_product_info.py
https://gitlab.tudelft.nl/cor/ro47014/2023_course_projects/group_03/rosplan/-/blob/main/retail_store_planning/load_product_info.py

actions, comprising the move, pick, and place actions,
is executed to pick and place the product object. There
are three durative place actions defined, one for each
table. Allocation of the appropriate place action for
a give product instance is based upon the governing
store rules. These rules are initially presented in natural
language, followed by their formal representation in
first-order logic:

1) A full and perishable product must be placed on the refrigerated table.

Vx object(x) N is_refrigerated(x) N is_full(x) =

store_in(z, refrigerated_table)

2) A full and non-perishable product must be placed on the non-refrigerated
table

Vz object(z) A is_not_refrigerated(x)

A is_full(xz) = store_in(x, non_refrigerated_table)
3) An empty or partially full product must be placed in the bin

Vz object(x) N is_not_full(z) = store_in(x, bin)

The presented task planning solution requires the
following assumptions considering the world model to
hold true:

1) The initial location of the store products are known.

2) The waypoints the robot base must move to are known.

3) All restocking locations have sufficient space to hold the

products.

4) All products are within the mass limits of the gripper,

for the picking and holding capabilities.

5) All products have an april_tag on them, in order for

them to be perceived within the simulation.

IIT. REASONING AND PLANNING

Once the ROSPlan knowledge base has been updated
with the relevant predicates for the product instances
and their corresponding goal states, the planner interface,
figure [2] is used to search for a viable plan to achieve
these goal states. The objective of the plan is to store
the following items:

TABLE I: Instances of product objects

Name
april_tag_cube_8
april_tag_cube_23
april_tag_cube_15
april_tag_cube_24

Type Weight
“hagelslag” 0.5
“hagelslag” 0.1
“yoghurt” 1.0
“yoghurt” 0.5

The POPF (Partially Observable Planning with Fairness)
planner is used to perform reasoning based on the com-
plete knowledge base provided by the problem interface.
It provides a plan given one exists. Subsection [[II-A
elaborates on the design choices for the durative actions
and how the definitions allow the POPF planner to find
a viable plan.

A. Durative actions

As mentioned, the robot performs durative actions
to reach the goal state. These durative actions, defined
in the PDDL 2.1 framework [6]], include move, pick,
place, placel, and place2. These place actions represent
placing on the non-refrigerated table, the bin table and
the refrigerated table respectively.

The move action enables the robot to navigate between
waypoints using the robot-at/2 predicate that specifies a
from and a to waypoint variable. Only one move action
is needed between a pick and a place action. To avoid
redundant moves, a new predicate called can_move/I
was introduced. The predicate is a condition for the
move action and is set to false as an effect of the move
action. An effect of the pick and place actions is that
can_move/l is set to true again, allowing the robot to
move to the desired table after picking or placing the
object.

The pick action instructs the robot to pick up an object
from the stock table’s adjacent waypoint, provided that
the robot satisfies the conditions of being located at that
waypoint and having a free gripper. The effect of the
action is that the robot is holding the object, while the
object is no longer on the stock table. Additionally, the
action enables the robot to perform one move action after
the pick action to navigate to the destination waypoint
to place the object.

To circumvent the limitations of the POPF plan-
ner’s lack of support for disjunctive-preconditions and
conditional-effects, the original place action is split into
three separate versions, each with distinct condition and
effect elements. The place action is utilized for placing
full and non-refrigerated objects onto the shelf table,
while the placel action is used for placing non-full
objects onto the bin table. Finally, the place2 action is
designed for placing full and refrigerated objects onto
the refrigerator table.

The place actions have conditions that require the
robot to be at the designated waypoint and holding
the object. Upon execution of these actions, the effects
include that the object is placed at its designated location,
that the robot is no longer holding the object, and
that the gripper is empty. Another effect is that the
robot can perform one move action after a place action.
Additionally, the object is assigned the stored predicate,
indicating that the goal for this object has been achieved,
and the plan proceeds to the next object on the list. Once
all objects on the list have been processed, the plan is
complete.

IV. RESULTS

Given the knowledge base, initial state, and goals,
the planner produced a plan as shown in Figure {4 In
accordance with the design of the task planning system,

the planner plans the following actions for each product
instance: the robot has to move to the stock table to pick
up the product, it then has to move to the appropriate
table to place the object. As the figure indicates, the
plan correctly identifies the tables at which the object
instances should be placed.

e ™ ' ™ s
move move move move
' wp0 wp_table_2 wp_table_3 >‘ wp_table_3
| wp_table_1 \ wp_table_1) wp_table_1 L wp_table_1

pick.
wp_t table 1
aprl\ |_tag_cube_8&

pick pick pick h
wp_table_1 wp_table_1 wp_table_1
apri_mg_cube_‘\sj apnl tag_cube 23 april_ﬁg_cube_m/

~

\ \ 4
move ‘ move J move ‘ maove

/\ N v

wp_table_1 wp_table_1 wp_table_1 wp_table_1
wp_table_2 wp_table_3 wp_table_3 wp_table 4
\ p, \ J . J

place2 placel placel A
wp_table_2 wp_table_3 wp_table_3
april_tag_cube_15 april_tag_cube_23 april_tag_cube_24
- - " oy

Fig. 4: Generated plan

place
wp_table_4
april_tag_cube_8
\P

TABLE II: Product predicates and end locations

Name Full Refrigerated End location
april_tag_cube_15 True True Refrigerator table
april_tag_cube_23 Not Not Bin table
april_tag_cube_24 Not True Bin table
april_tag_cube_8 True Not Shelf table

The plan’s correctness has been verified; however,
several issues arose when attempting to simulate the plan
in a customized world. A plethora of ROS errors were
encountered when deploying the task planning system
in the custom world depicted in Figure [3] to execute
the plan presented in Figure ff] One consequence of
the errors was that Gazebo was unable to render the
robot in the custom world. A logical debug step was to
attempt to plan in the course provided world. However,
when introducing additional products into this standard
world via April tags, the robot failed to recognize these
tags, even when using the base world provided in the
course. The coordinates of the additional objects were
stored in the objects.yaml file, as described in Section
It is possible that an additional step is necessary
for proper functionality or that the April tags are not
working correctly. In an attempt to provide an even
simpler combination of the task planning solution with
the simulated world, the durative actions where tested in
the base world provided in the course. When testing the
durative actions defined using the base world, the robot
could move and occasionally pick up products, but it
never succeeded in placing them. Even in a simplified
plan that only involved move, pick, move and place of a
single product, the robot failed to place the item. A ROS
warning message indicated that the location to place the
item was “out of reach,” despite attempts to adjust the
waypoints. A video illustrating the outcome of this task
is available in the GitLab repository at the following link:

test_video.com. This behavior implies that there may
be an error in the ROSPlan action interface responsible
for executing the placing action. Further investigation
is required to resolve this specific issue. However, due
to time constraints and the fact that the problem did not
relate to the primary learning objectives of this course, it
was not given priority and remained unresolved. Another
issue was that the robot arm spawns in a singularity,
hindering the proper functioning of the pick action. In
conclusion, the plan presented in Figure 4| is correct
based on our design choices and store rules, but the
simulation did not visualize the plan’s execution.

V. DISCUSSION

This report has demonstrated the effectiveness of
the designed task planning system in the context of
automated retail store restocking. To improve the current
design, further research could explore the use of an
alternative planner such as SMTplan+ [7]. As described
in section the current design uses a workaround
where negated versions of predicates are introduced to
enable the POPF planner to solve the task planning
problem. The POPF planner also forced the solution to
include separate place actions for each table, each with
distinct condition and effect elements. While this strategy
proved effective for the current problem, it will become
tedious when dealing with a larger amount of tables
at which products need to be placed. Therefore, future
work should investigate alternative planning approaches
to address these challenges.

To achieve a functional simulation, it is important to
prioritize resolving the issue with the placing task. In-
vestigation of the place action interface could potentially
address the problem, or alternatively, tuning the location
definition using quaternions via a place_client could be a
potential solution. ROS provided warnings that the item
placement location was “out of reach,” indicating that the
location definition could be causing the issue. Another
crucial step would be to address the issue where the
robot arm spawns in a singularity, hindering the proper
functioning of the pick action. A possible solution for
this issue is to remove the “panda” tags from the world
file. Additionally, reading issues related to the april_tags
must be resolved. The simulated world could also be
further customized by adding more products and tables,
and incorporating an alternative planner to prevent the
need for tedious redefining of actions.

REFERENCES

[1] N. Kishida and H. Nishiura, “Demographic supply-demand im-
balance in industrial structure in the super-aged nation japan,”
Theoretical Biology and Medical Modelling, vol. 15, pp. 1-10,
2018.

[2] P. K. Donepudi, “Robots in retail marketing: A timely opportu-
nity,” Global Disclosure of Economics and Business, vol. 9, no. 2,
pp. 97-106, 2020.

https://gitlab.tudelft.nl/cor/ro47014/2023_course_projects/group_03/rosplan/-/blob/main/final_sim.mp4

[3]
(4]

(3]
(6]

(71

F. Ingrand and M. Ghallab, “Deliberation for autonomous robots:
A survey,” Artificial Intelligence, vol. 247, pp. 10-44, 2017.

P. Haslum, N. Lipovetzky, D. Magazzeni, and C. Muise, “Discrete
and deterministic planning,” in An Introduction to the Planning
Domain Definition Language. Springer, 2019, pp. 13-61.
“Rosplan.” [Online]. Available: http://kcl-planning.github.io/
ROSPlan/

M. Fox and D. Long, “PDDL2.1: an extension to PDDL for ex-
pressing temporal planning domains,” CoRR, vol. abs/1106.4561,
2011. [Online]. Available: jhttp://arxiv.org/abs/1106.4561

M. Cashmore, M. Fox, D. Long, and D. Magazzeni, “A compila-
tion of the full pddl+ language into smt,” in Proceedings of the
international conference on automated planning and scheduling,
vol. 26, 2016, pp. 79-87.

http://kcl-planning.github.io/ROSPlan/
http://kcl-planning.github.io/ROSPlan/
http://arxiv.org/abs/1106.4561

	INTRODUCTION
	WORLD MODEL AND KNOWLEDGE BASE
	Initial knowledge base
	Problem interface

	REASONING AND PLANNING
	Durative actions

	RESULTS
	DISCUSSION
	References

